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Abstract
Multiple Sclerosis (MS) is a chronic autoimmune disorder that affects the central nervous system and

can result in various symptoms, including muscle weakness, spasticity, and fatigue, ultimately leading
to the deterioration of the musculoskeletal system. However, in recent years, exosuits have emerged as
a game-changing solution to assist individuals with MS during their daily activities. These lightweight
and affordable wearable robotic devices have gained immense popularity. In our study, we assessed the
performance of an elbow motion exosuit on eight individuals with MS using high-density electromyo-
graphy to measure biceps muscle activity. The results demonstrated that our prototype significantly
reduced muscle effort during both dynamic and isometric tasks while increasing the elbow range of mo-
tion. In addition, the exosuit effectively delayed the onset of muscle fatigue, enhancing endurance for
people with MS and enabling them to participate in longer and more extensive rehabilitation protocols.
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1. Introduction

Multiple sclerosis (MS) is a common neu-
rodegenerative chronic disease affecting approx-
imately 3 million people globally.1 Individuals
with MS suffer from motor and cognitive impair-
ments, including muscle weakness, fatigue, spas-
ticity, and attention deficit.2 Upper limb impair-
ments in people with MS affect finger movements,
bilateral coordination, and muscle synergies acti-
vation, which significantly impact their activities
of daily living and quality of life.3–6

Robotic devices show promise in improving
motor function for individuals with MS.7 How-
ever, despite the rapid growth in technology for

assistance and rehabilitation, there are only few
studies focused on treating upper limb-related MS
disorders.5, 8–11 For example, Pierella et al.12 de-
veloped a body-machine interface for a planar
robot manipulandum that reduces biceps/triceps
co-contraction in reaching tasks, and Jakob et
al.13 tested the efficacy of commercially avail-
able robotic platforms in reducing kinematic im-
pairments. There is evidence suggesting that long-
term rehabilitation programs involving upper limb
robotics can provide functional benefits for people
with MS.14

Due to the high cost of rehabilitation robots,
only a limited number of private customers are
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able to afford them. Thus, these devices have been
primarily used in specialized markets such as hos-
pitals, clinics, and rehabilitation centers. The de-
velopment of low-cost untethered lightweight ex-
oskeletons and exosuits15 presents an alternative
to traditional rigid robotic platforms, which can
increase the accessibility of wearable robots for
people affected by MS to assist with activities of
daily living.

The goal of this approach is to provide de-
vices that can be worn and operated indepen-
dently, without the need for expert or medical
supervision, both in the home and outdoor envi-
ronments. These devices can improve working
conditions,16 restore walking,17 upper-limb move-
ments,18, 19 and grasping functions.20

In the last few years, we demonstrated how ex-
osuits are able to reduce muscular effort21 with-
out hindering the wearer’s kinematics,22 both
in industrial applications23 and in high dynamic
tasks.24 We refined our architecture to match three
main points: lightness, portability, and usability.

In this study, we aimed to assess the effect of
using an exosuit on individuals with MS by having
eight of them undergo two different tasks while
wearing a soft device for elbow assistance. Our
goal was to determine if the exosuit improved en-
durance while preserving natural motion. The first
task required dynamic arm movements through el-
bow flexion, while the second task required partic-
ipants to hold a weight isometrically for a time of
180s. We monitored performance using a com-
bination of kinematic and physiological metrics
through high-density surface electromyography.
The results indicated that the exosuit did not hin-
der natural movements during the dynamic task
and effectively reduced muscle effort. Moreover,
the robotic assistance delayed the onset of mus-
cular fatigue and enabled individuals with MS to
exercise with higher intensity, a more number of
repetitions, and for a longer duration. These find-
ings align with those of a previous study on peo-
ple with Bethlem muscular dystrophy and cervical
spinal cord injury.25

This paper aims to demonstrate the potential
of wearable devices to revolutionize the support
provided to individuals with Multiple Sclerosis in
rehabilitation practice and daily activities. This
can lead to an improvement in their quality of life

and increased independence.

2. Exosuit Design and Control
[Figure 1 about here.]

The exosuit, which is depicted in Fig.1a, is
an untethered system that assists in elbow flexion
movements: it consists of an actuation unit, which
is the central component of the active support sys-
tem, and a custom-made textile harness to transfer
the force to the user’s joint via an external artifi-
cial tendon.

This last element, made of kevlar fiber (Black
Braided, KT5703-06, 2:2kN max load, Loma
Linda CA, USA), is connected to the subject’s
forearm through a 3D printed distal anchor point
sewed onto the orthosis. The resistive forces of
the tendon, such as friction and backlash, are
absorbed by a Bowden cable (Shimano SLR,
�5mm, Sakai, Ōsaka, Japan) and transferred to
the textile harness via a second anchor point lo-
cated at the shoulder. The actuation stage is de-
signed to be lightweight and portable, weighing
only 2kg and powered by a battery pack, allow-
ing the user to receive active support for around 8
hours.

The actuation stage comprises a flat brushless
motor (T-Motor, AK60-6, 24V, 6:1 planetary gear-
head reduction, Cube Mars actuator, T-MOTOR,
Nanchang, Jiangxi, China), and two microcon-
trollers. The first microcontroller manages com-
munication with the sensors through Bluetooth
Low Energy (BLE), while the second microcon-
troller is responsible for real-time control. The
sensing network, which detects the user’s motion
and measures the interaction force between the
wearer and exosuit, includes two Inertial Mea-
surement Units (IMUs, Bosch, BNO055, Gerlin-
gen, Germany) for detecting 3D arm kinematics
and a force sensor (ZNLBM-1, 20kg max load,
Bengbu Zhongnuo Sensor, China) to measure the
interaction force applied to the user. The commu-
nication protocol between the sensing systems and
the control stage has been implemented via BLE,
as described in Burchielli et al.26

The control framework operates in real-time
(as shown in Fig. 1b) and is built on the "Dynamic
Arm Module" approach previously proposed in
Lotti et al.,24 which exploits the electromechanical
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assistance using a 3D biomechanical model of the
human arm, customized to the participant’s body
measurements. The force sensor measures the in-
teraction torque, and an admittance controller uses
the difference between this value and the refer-
ence torque to determine the motor velocity com-
mand.

3. Experiments
The study involved eight right-handed indi-

viduals diagnosed with Multiple Sclerosis accord-
ing to the McDonald criteria.27 These partici-
pants were selected from the group of outpatients
treated at the AISM (Italian Association of Mul-
tiple Sclerosis) Rehabilitation Service of Genoa,
Italy. The inclusion criteria were:

• > 18 years old;

• all diseases courses;28

• stable disease course in the last 3 months;

• Expanded Disability Status Scale (EDSS) ≤
7.5;29

• Mini-Mental Status Examination (MMSE)
> 24;30

• Evaluation of upper limb disability through
Rasch methodology (ABILH) ≥20.31

Participants’ demographic and clinical data
are reported in Table 1 (two females, 62.1 ± 8.0
years old, height 1.71 ± 0.09 m, body weight 67.4
± 8.5 kg, ABILH 38.9 ± 9.0, EDSS 4.81 ± 1.16,
mean ± sd).

[Table 1 about here.]

The local Ethics Committee approved the
study (CER Liguria: 197/2022 - DB id 12304). It
conformed to the ethical standards Declaration of
Helsinki as revised in 2013, and each participant
signed a consent form to participate in the study.

3.1. Experimental Apparatus and Protocol
We evaluated the exosuit performance in indi-

viduals with MS using a high-density electromyo-
graphy system (HDsEMG), a sixty-four chan-
nels probe (Muovi+Pro, OT Bioelettronica s.r.l.,

Torino, Italy), placed on the participant’s arm, to
measure the biceps activity.

The experiment included two distinct tasks,
referred to as Pick and Place (dynamic) and En-
durance (isometric), described in subsequent sec-
tions, with the objective of evaluating various out-
comes.

[Figure 2 about here.]

1. Pick and Place (Fig. 2a). The participants
were required to move a 500mL bottle of
water, weighing 0.5kg, between two posi-
tions placed in front of them that differed
in height by approximately 30cm. An au-
dio cue from an external source initiated the
movement to the appropriate target location,
and no constraints on movement or tim-
ing were imposed for completing the task.
The Pick and Place task was performed in
three different random conditions: (1) with-
out the device (No Suit), (2) wearing the de-
vice while it was turned off (Unpowered),
and (3) with the assistance of the device
(Powered). For each condition, 12 back-
and-forth movements were performed. A
5min break was scheduled between the con-
ditions to prevent muscle fatigue.

2. Endurance (Fig. 2b) Test in which partic-
ipants held a dumbbell with a mass corre-
sponding to approximately ≈5% of their to-
tal body weight at a 90◦ angle of the el-
bow, avoiding involving the shoulder mus-
cles. The maximum time limit for this
task was set to 180s but was terminated
at the subject’s request when exhaustion
was reached. The Endurance task was
performed in two different conditions pre-
sented randomly: (1) Unpowered, and (2)
Powered. A 15min rest period was given to
the participants between conditions to allow
them to recover from muscle fatigue.

3.2. Data Analysis
To evaluate the performance of the exosuit in

individuals with Multiple Sclerosis, we examined
kinematic and physiological measures. For the
Pick and Place task, we utilized Inertial Measure-
ment Units (IMUs) to obtain data at a sampling
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rate of 100Hz and determine the elbow flexion
and extension phases. To calculate the speed of
the joint, a 4th-order Savitzky-Golay filter with a
10Hz cutoff was employed. The onset of move-
ment was identified as the point when the speed
surpassed 10% of its maximum value, and the
endpoint was identified as the time when the speed
fell below the same threshold.32 The range of mo-
tion, mean velocity and peak velocity of the elbow
joint were analyzed during these phases. In order
to assess the smoothness of the kinematics, we
utilized the SPectral ARC length (SPARC) tech-
nique, which assigns lower values to movements
that are less smooth.33

The HDsEMG signals were recorded at a
rate of 2kHz and underwent further processing
to clean the data. A fourth-order Butterworth
bandpass filter was applied, with a frequency
range of 20-400Hz, to extract the relevant signal.
Any power line interference was removed using a
notch filter (50Hz), and any remaining noisy chan-
nels were interpolated using the data from neigh-
boring channels. Each channel was normalized
based on the 95th percentile of all signals calcu-
lated from multiple recordings of the same par-
ticipant.34 The biceps activity was measured in
terms of activation volume, which was calculated
as the volume of the distribution of root mean
square (RMS) amplitudes for each electrode in a
monopolar configuration. The activation volume
was calculated using 500ms epochs and was com-
pared across conditions to assess changes in activ-
ity.34

In addition, the HDsEMG data collected dur-
ing the Endurance task was used to analyze the
onset of fatigue. The muscle fiber conduction ve-
locity (CV) was used as an indicator of fatigue.35

Longitudinal double-differentials were calculated
by subtracting signals from consecutive rows in
the single-differential configuration. CV was esti-
mated by dividing the distance between two con-
secutive detection points along the muscle fibers
by the delay between the detected signals.35 The
delay was calculated from the maximum of their
cross-correlation. Fatigue was quantified as the
slope of a first-order model fitting the CV data
during the first minute of the Endurance task, with
epochs of 500ms. A steeper negative slope indi-
cated a faster onset of fatigue.36 Finally, the du-

ration of the Endurance task was also taken into
account as a muscle fatigue metric.

3.3. Statistical Analysis

We assessed the normal distribution of the
measurements via a Shapiro-Wilk test with a sig-
nificance level set at α = 0.05. Repeated mea-
sures analysis of variance (rANOVA) was adopted
to examine the effects of the biceps activities in
the Pick and Place task. We considered the ’Assis-
tance’ as within-subjects factor: (No Suit, Unpow-
ered, Powered). Statistical significance was con-
sidered for p-values lower than 0.05; we reported
the notation Fdf1,df2 to indicate the degrees of free-
dom. Post-hoc analysis on significant main effects
and interaction was performed using Bonferroni-
corrected paired t-tests. Statistical analysis was
conducted using Minitab (Minitab, State College,
PA, USA). Reported values and measurements are
presented as mean ± standard error (SE). We
highlighted significant differences in the results
with the symbol * in all the figures.

4. Results

4.1. The exosuit increases elbow range of motion

Fig.3 shows the kinematic data extracted from
IMUs signal during the Pick and Place task. The
flexion and extension phases of elbow kinemat-
ics, normalized with respect to execution time, are
presented in Fig.3a-b, displaying the average data
from all participants. While assisted by the de-
vice, the elbow angle achieved higher amplitude
peaks, resulting in a significantly higher range
of motion in the Powered(46.38±3.57◦) with re-
spect to the Unpowered(41.07±3.06◦) condition
(Fig.3c, p < 0.001).

Fig.3b shows higher velocities during flexion
in the Unpowered condition, whereas similar pro-
files were found during extension between con-
ditions. As a consequence, a significantly higher
peak velocity was found in the Unpowered con-
dition (59.00±4.11◦/s) with respect to Powered
(43.65±3.57◦/s) condition (Fig.3d, p < 0.001).

However, no significant difference resulted
in the elbow mean velocity (Unpowered:
22.07±1.61◦/s, Powered: 22.12±1.90◦/s, p =
0.96, Fig.3f).
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At last, movement smoothness (Fig.3e) was
significantly higher (p < 0.001) in the Unpow-
ered condition (SPARC: -1.44±0.06) with respect
to the Powered condition (SPARC: -1.47±0.03).

[Figure 3 about here.]

4.2. The exosuit reduces muscular effort in both
dynamic and isometric tasks

A repeated measures ANOVA showed signif-
icant differences between the conditions regard-
ing the normalized activity volume (F2,7 = 17.61,
p < 0.001). As shown in Fig.4a, a representative
participant’s HDsEMG activation matrix during
the Pick and Place task was similar in No Suit and
Unpowered conditions in both the flexion and ex-
tension phases, whereas biceps activity was lower
in the Powered condition. Post-hoc analysis con-
firmed this finding (Fig.4b), revealing a significant
difference in the normalized biceps activation vol-
ume (p < 0.001) between the Powered (0.30 ±
0.13) and the No Suit (0.53±0.14) conditions and
a significant difference (p = 0.003) between the
Powered and the Unpowered (0.43 ± 0.14) con-
ditions. No significant difference was observed
between the No Suit and Unpowered conditions
(p = 0.030).

The reduction in biceps activity during the
Powered condition was observed also in the En-
durance task, as shown in Fig.4c by the activa-
tion volume of a representative participant hold-
ing the dumbbell in isometric flexion. This was
confirmed for all participants by the highlighting
of a significant difference (p = 0.0325) between
the Unpowered (0.36 ± 0.01) and the Powered
(0.32± 0.01) conditions.

[Figure 4 about here.]

4.3. The exosuit increases biceps endurance
HDsEMG allows assessing how the com-

mand from motor neurons spreads through muscle
fibers, as depicted in Fig.5a: a decrease in conduc-
tion velocity was associated with higher levels of
fatigue. A significant difference (p = 0.0325) was
found between the Unpowered (−0.04±0.02%/s)
and Powered (0.15±0.14%/s) conditions, indicat-
ing that the exosuit improved endurance (Fig.5b).

Moreover, we noticed that most participants ter-
minated the Endurance task prematurely when
they performed it without assistance from the exo-
suit. However, during the Powered condition, they
were able to hold the dumbbell for the entire du-
ration of the task. This pivotal finding becomes
more evident when examining the time spent on
the Endurance task (Fig.5c), which showed a sig-
nificant difference (p = 0.0026) between the Un-
powered (114.6±14.7s) and the Powered(165.5±
11.6s) condition.

[Figure 5 about here.]

5. Discussion
Individuals with Multiple Sclerosis experience

a gradual and consistent decline in neuromuscular
abilities, resulting in reduced muscle strength and
endurance.37, 38 This reduces their ability to per-
form everyday activities related to personal care,
leading to a decreased quality of life and mak-
ing it difficult to lift or carry objects indepen-
dently.39 Our goal was to investigate the efficacy
of an exosuit designed to assist the biceps mus-
cle in reducing the burden on the musculoskeletal
system of people with MS. The prototype we de-
veloped is compact, lightweight, and can be easily
worn by those with neuromuscular disabilities.24

Our control method does not require calibration
or medical assistance but instead incorporates the
user’s anthropometric measurements into the con-
trol process.

5.1. Higher mobility without hindering wearer’s
motion

The use of the exosuit led to an increased
range of motion for all the participants (see
Fig.3c), and it enabled them to carry out the Pick
and Place task by keeping a consistent mean ve-
locity during elbow movements (see Fig.3f).

A lower peak velocity (Fig.3d) in the Pow-
ered condition can be attributed to the novelty
of using the exosuit for the participants. Indeed,
it is reasonable to assume that with a longer fa-
miliarization, the kinematics would improve and
match the values recorded during the Unpowered
condition. Our results indicated that the move-
ments were smoother without the exosuit’s assis-
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tance (see Fig.3e), which is consistent with prior
research on unimpaired individuals who used the
same control strategy.22

5.2. Reduction in muscular effort

By utilizing the HDsEMG system for biceps
activity acquisition, we were able to conduct a
deep analysis of biceps muscle activation during
both dynamic (Pick and Place) and isometric (En-
durance) tasks. We assessed biceps activity in
terms of activation volume, which considered not
only the amplitude of the channels but also the
distribution of muscle activity across the electrode
matrix.

Our results demonstrated that individuals with
MS had lower biceps activity when using the exo-
suit, regardless of the type of movement required.
This pattern has been extensively studied in unim-
paired people, where our elbow exosuit has been
proven to reduce biceps effort in most elbow flex-
ion tasks.21–24, 40 The results of our present study
further emphasize the advantages of using an exo-
suit, particularly for individuals who have experi-
enced partial muscle strength and endurance loss.

5.3. Higher endurance and less fatigue

The analysis of conduction velocity using the
HDsEMG exhibited a noticeable enhancement in
muscular endurance while lifting loads, as demon-
strated by the delayed onset of fatigue (Fig.5b).
This significant finding was further corroborated
by the fact that most of the participants were
unable to complete the Endurance task unaided,
stopping before the maximum time of 180s. On
the other hand, in the Powered condition, the av-
erage stop time was nearly 60s longer.

5.4. Limitations and future steps

Our study’s findings provide evidence for the
potential benefits of exosuits in assisting people
affected by Multiple Sclerosis. However, it is
worth noting that our study has limitations as the
exosuit was tested in a controlled setting (i.e. lab-
oratory) for a limited number of participants and
a restricted amount of time (i.e. 1h). To better
understand the practical applications of the exo-
suit for people with MS, further research is re-

quired to examine its use over extended periods of
time in more ecological settings (e.g. at home and
work), with a larger population that includes dif-
ferent types of MS and stages of the disease. Ad-
ditionally, the ergonomic properties of the exosuit
could be evaluated through ad-hoc and validated
questionnaires. In this way, we will be able to en-
hance the quality of life for people with Multiple
Sclerosis and other neuromuscular conditions.

6. Conclusions
The use of wearable and lightweight devices

to assist individuals with neuromuscular diseases
has been restricted to a few specific situations.
However, in this study, we showed the potential
of using an exosuit to support individuals in com-
pleting easy tasks but important for completing
daily living activities. Our findings indicated that
the exosuit effectively reduced musculoskeletal
strain, delayed the onset of biceps fatigue, and im-
proved endurance. In summary, our approach has
the potential to assist people with Multiple Scle-
rosis in their daily activities, and we believe that
widespread adoption of such devices can greatly
enhance their quality of life.
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Figure 1. Elbow exosuit design and real-time control framework The design and control framework of the elbow exosuit
can be described as follows. (a) The exosuit is a system that supports elbow flexion through fully-actuated tendon-driven
mechanisms. It consists of two main components: a lightweight orthosis and a back protector that houses the actuation

stages, control unit, and power unit. The exosuit is equipped with two IMUs that capture the 3D arm orientation and a force
sensor that measures the interaction force between the user and the suit. (b) The exosuit is capable of assisting the wearer
through the dynamic arm module by compensating for the effort required to lift the forearm against gravity. The control

framework includes a biomechanical model that is customized to the user’s anthropometry. The reference torque is
estimated and then compared to the interaction torque that is extracted from the force sensor. The torque tracking error is
then converted into a motor velocity command through an admittance controller and sent to the actuation stage to provide

the necessary assistance .
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Figure 2. Functional tasks. (a) The Pick and Place task involved participants grasping and moving a 500mL bottle filled
with water between two designated locations (i.e. the orange circles). (b) In the Endurance task, participants were required

to hold a dumbbell equivalent to ≈5% of their overall body mass while keeping their elbow at a 90◦ angle.
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Figure 3. Pick and Place, kinematic results. Data related to the Unpowered condition are depicted in grey, while Powered
condition is represented in red. (a) IMU signals used to extract elbow kinematics for all participants are shown and

normalized with respect to execution time. (b) Elbow velocity averaged across all participants is presented, The solid lines
represent the mean value, while the shaded area is the standard deviation. Panels (c), (d), (e), and (f), respectively, display

the elbow range of motion, peak velocity module, SPARC index, and mean velocity module for both the flexion and
extension phases. The error bar depicts the standard error. The symbol ∗ denotes a statistically significant difference

(p < 0.05).
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Figure 4. Biceps activation. (a) Matrix showing the muscle activation of a representative MS subject during the Pick and
Place task in the three different conditions (No Suit, Unpowered, and Powered). (b) Volume of biceps muscle activation
normalized across all participants during the flexion and extension phases of the Pick and Place task. (c) Biceps muscle

volume of a representative participant during the Endurance task with and without exosuit assistance (Powered and
Unpowered conditions, respectively). (d) Volume of biceps muscle activation normalized across all participants during the

Endurance task. The error bar depicts the standard error. The symbol ∗ denotes a statistically significant difference
(p < 0.016 in panel b, p < 0.05 in panel d).
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Figure 5. Biceps fatigue and participants’ endurance. (a) Raw HDsEMG signals in a monopolar configuration of a typical
subject during the Endurance task. The black lines represent the channels in a time window of 20ms, and the colormap
indicates the RMS. (b) Conduction velocity and (c) endurance times averaged across all the participants. The error bar

depicts the standard error. The symbol ∗ denotes a statistically significant difference (p < 0.05).
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Table 1. Demographic and clinical table.

Subject Gender Age (yrs) Height (m) Weight (kg) ABILH EDSS

66

1

2

3

4

5

6

7

8 M

M

M

F

M

M

M

84

71

72

60

60

68

58

1.83

1.80

1.65

1.60

1.63

1.80

1.70

1.70

49

61

68

62

75

67

60

55

38

44

46

35

24

29

46

49

4.5

3.5

6.0

4.0

6.0

7.0

4.0

4.5

F
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