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Index Terms—Abstract—Exosuits are wearable technologies
that improve physical capabilities and mobility providing support
during various activities. Although primarily intended for med-
ical rehabilitation, there is growing interest in utilizing exosuits
in industrial environments to prevent work-related musculoskele-
tal disorders (WMSDs) by ensuring continuous joints support.
However, achieving synchronization between the exosuit and
human motion, as well as effectively controlling interactions with
the surroundings, presents ongoing challenges. The integration
of computer vision techniques, particularly object recognition
algorithms, can greatly assist exosuits in understanding the
user’s environment and adapting their behaviour accordingly.
To address this issue, we have developed a control strategy for a
soft exosuit that employs computer vision to collaboratively offer
tailored assistance to the elbow, alleviating joint stress during
interactions with objects of various natures and weights. We con-
ducted a study to assess the effectiveness of the integrated system,
which merges object recognition and gravity compensation within
a built-in structure of the robotic exosuit. The findings confirmed
that the suggested solution notably minimized muscle strain
during dynamic activities, exhibiting a consistent correlation with
the mass of the object being lifted, namely reducing by 45% and
54% respectively the Biceps activity while lifting the MW and
HW compared to the 32% of the ”Dynamic Arm”. The intention
of this contribution is to pave the way for incorporating the vision
algorithm, thus enabling a more efficient interaction between the
user and the exosuit itself. This includes adapting the control
strategy to account for variations in environmental dynamics.

Exosuits; Computer Vision; Embedded Control; Assistive
Robotics; Industry 4.0.

I. INTRODUCTION

Exosuits, often referred to as soft exoskeletons, represent a
category of wearable technology capable of enhancing user
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physical abilities, promoting mobility, and offering support
during diverse activities [1]. In contrast to rigid exoskeletons
that rely on stiff frames and motors for external support,
exosuits harness flexible fabrics and soft actuators to replicate
the body’s natural motions.

In recent times, there’s been an escalating interest within
the industry for soft, active wearable robots that assist single
or multiple upper extremity joints [2]. Even though these
devices are primarily engineered for medical applications to
rehabilitate motor control [3], [4], their versatility compared
to their rigid counterparts means that exosuits can serve not
only as a rehabilitative tool but also in industrial contexts [2],
[5]. This involves providing consistent joint support to workers
during their daily tasks to prevent work-related musculoskele-
tal disorders (WMSDs) and avoid muscle strain during the
working tasks.

One of the major unsolved issues in exosuit development
is the synchronization between the device and the wearer,
along with controlling the interactions with the environment
[6], [7]. The soft robotic suit needs to offer assistance to the
user without impeding physiological motion, and adjusting the
level of assistance based on the user’s interactions with objects
or devices around them [8]. This aspect becomes particularly
important when the aim is to deliver assistance in an industrial
setting where continuous interaction between the user and
items or devices is the norm.

Vision plays a central role in human motion planning and
interaction with the surrounding environment. For example,
before and during contact and manipulation of objects, our
brain utilizes visual information from our eyes to estimate the
force that our hands need to exert.[9].

Bearing this principle in mind, adopting object recognition
or classification algorithms for analyzing and processing visual
data, a field known as computer vision, has been broadly
utilized in automation [10]. This includes regulation of inter-
actions, avoidance of unintended collisions, and more recently,
fine-tuning manipulation via visual serving [11].

Despite the complexity of object recognition within the
domain of computer vision, due to variations in shapes, sizes,
and appearances of objects, as well as factors like lighting con-
ditions, occlusion, and clutter [12], its potential benefits and
advancements are noteworthy. In response to these challenges,
a wide array of algorithmic approaches have been crafted
by researchers. These span from classical computer vision
methodologies [13], [14] to more recent deep learning-based
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Fig. 1. Exosuit Design and Experimental Set-Up. One the left side design of the elbow exosuit: the exosuit employs fully-embedded tendon-driven mechanisms
to enable elbow flexion. It consists of two key components: a lightweight orthosis and a back protector housing the actuation stages, a control unit, and a
power unit. In addition, the exosuit integrates two IMUs for capturing the arm’s three-dimensional orientation, a force sensor for measuring the interaction
force between the user and the suit, and an RGB camera for object detection during user interactions. During the ”Vision On” control mode, the assistance
level adjustment is triggered by a pressure sensor located on the user’s index fingertip. On the right panel, schematic representation of the experimental set-up
and GUI developed for the evaluation of the control algorithm.

techniques [15]. The evolution of these methods highlights the
robust adaptability and growing capability of computer vision
to overcome the challenges inherent in diverse and dynamic
environments.While the application of computer vision is pri-
marily seen in industrial robotics, there’s compelling evidence
to suggest that such techniques can be harnessed in assistive
technology. This would provide situational awareness and dis-
cernment of environmental dynamics, subsequently allowing
the assistance provided by wearable robotic devices to be tuned
dynamically and adaptively [16]. By incorporating computer
vision technology, exosuits can gain a better understanding
of the user’s surroundings and make adjustments to their
behaviour accordingly [17]. For instance, the exosuit may
adjust the level of assistance provided based on the objects
that the user is interacting with. Currently, there have been
initial attempts to incorporate computer vision into wearable
robotics, either to assist upper limb joints in grasping and
manipulation or lower limbs during locomotion. These efforts
primarily concentrate on object recognition to facilitate the
automatic grasping of desired objects by the user’s hand [18],
[19] or identifying stairs to adjust the assistance level provided
by wearable devices based on the surrounding environment
[20], [21]. Our prior investigation highlighted the continuous
support abilities of exosuits designed for the elbow joint ap-
plied in the industrial environment [5]. These exosuits operate
in conjunction with the user, offering the benefits of being
lightweight and easily transportable. The target of our current
research is to develop an occupational exosuit that actively
assists the elbow during tasks that involve lifting or repetitive
movements, in particular in industrial settings. Considering the
wide range of movements encountered in workplaces and the
various objects that users interact with, our aim is to develop a
specialized algorithm that can provide customized assistance
in collaboration with the user. This algorithm preserves the
natural motion of the elbow by reducing strain at the joint

and preventing WMSDs in situations where the arm is not
loaded, as well as when interacting with objects in industrial
environments.

II. DESIGN AND CONTROL

A. Exosuit Design

The elbow exosuit (Fig. 1) comprises two main components:
an embedded actuation stage using a tendon-driven principle
and a customized textile harness that transfers force to the
elbow joint. The device weighs 2 kg and is powered by a single
battery pack (Tattu, 14.8 V, 3700 mAh, 45 C), allowing for
approximately 8 hours of continuous operation. The design of
the actuation prioritized lightness and portability and includes
a flat brushless motor (T-Motor, AK60-6, 24V, 6:1 planetary
gear-head reduction, Cube Mars actuator, T-MOTOR, Nan-
chang, Jiangxi, China) that drives a pulley (35 mm diameter)
around which the actuation cable is wound, as well as the
control unit: this last consists in two microcontrollers running
at 100 Hz refresh frequency. The first microcontroller com-
municates with the sensing units via Bluetooth Low Energy
(BLE, Feather nRF52 Bluefruit, Adafruit Industries, New York
City, USA), while the second microcontroller (Arduino MKR
1010 WiFi, Arduino, Ivrea, Italy) is responsible for real-time
control of the actuation. The sensing units, as described in
Missiroli et al.[5], are composed of one microcontroller each
(Feather nRF52 Bluefruit, Adafruit Industries, New York City,
USA), that communicates via BLE interaction torque and the
3D kinematics of the user to the control unit. Two Inertial
Measurement Units (IMUs, Bosch, BNO055, Gerlingen, Ger-
many) detect the user’s motion and reconstruct 3D arm kine-
matics, while a single axis load cell (ZNLBM-1, 20 kg max
load, Bengbu Zhongnuo Sensor, China) connected between
the actuation cable and the distal anchor point measures the
interaction force between the subject and the exosuit. The
transfer of force from the motor to the user is obtained by
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an actuation cable (Black Braided Kevlar Fiber, KT5703-06,
2.2 kN max load, Loma Linda CA, USA) that connects the
user’s forearm to the actuation unit via a 3D printed distal
anchor point fastened on ad-hoc tailored orthosis (Sporlastic
Neurolux II, Nürtingen, Germany). A second anchor point,
sewn at the shoulder level, connects the actuation unit to the
textile harness via a Bowden cable (Shimano SLR, 5 mm
diameter, Sakai, Ōsaka, Japan) that absorbs resistive forces
of the actuation cable (e.g., friction, backlash) and transfers
them to the textile harness. To identify objects and provide
an estimation of the external weight lifted, an RGB camera
(Logitech C920s PRO HD WEBCAM, Newark, CA, USA)
placed on the user’s chest and a dedicated embedded board
(NVIDIA Jetson Nano, Santa Clara, CA, USA) running at
30 Hz was used. The decision to place the camera on the
user’s chest was driven by the need to closely focus on
the operator’s workspace, as in teleoperation and assistive
robotics. This approach also provides dynamic adaptability for
versatile interaction with the environment, keeping the device
a standalone system.The boards communicate with each other
via the Universal Serial Bus protocol. A pressure sensor (FSR
400 short, Interlink Electronics, Camarillo, California, USA)
placed at the level of the index fingertip was used as a trigger
to detect the interaction between the hand and the lifted object.

B. High-level control: Computer Vision Training and Param-
eters Optimization

For object recognition, we chose to utilize a pre-trained
Convolutional Neural Network (CNN) structure known as
MobileNet SSD v2. This CNN functions at a frequency of
30Hz and runs on a dedicated board, specifically, the NVIDIA
Jetson Nano.

Our training dataset comprised 1500 images collected from
the authors from six distinct object classes: hammer, drill,
cable spool, box, scissor, and disinfectant barrel, divided
into evenly distributed subsets. These images were captured
with a range of variables in mind, including object zooms,
perspective angles, backgrounds, illumination, and focus. This
was done to enhance the generalization of our proposed dataset
and introduce variability into the network. We divided the
images into three subsets using an 80/20 splitting strategy
to prevent overfitting: 80% for training, 10% for validating,
and 10% for testing. The pre-trained MobileNet SSD model
was trained using this image dataset. We explored different
combinations of batch sizes (2, 4, and 8), worker counts (1, 2,
and 4), epochs (ranging from 30 to 250), and initial learning
rates (0.1 or 0.01). The model with the lowest average loss,
indicating the highest prediction accuracy, was selected as
the best-performing model. Ultimately, we achieved optimal
performance by training the model for 80 epochs, using a batch
size of 4, 2 workers, a learning rate of 0.1, and an average
loss of 1.085. From the output of the CNN, we selected three
representative objects (hammer 0.1 Kg, drill 0.9 Kg, and cable
spool 1.8 Kg, labelled as Low-Weight, Mid-Weight and High-
Weight respectively along the article), chosen according to the
uniform distribution in the weight change, and after linking the
dataset with a lookup table we streamed the weight estimation

(0.1 Kg, 0.9 Kg and 1.8 Kg respectively) and the confidence
level to the Arduino board running the Dynamic Arm Control
Framework.

Fig. 2. Elbow exosuit real-time control framework and interaction torque.
Representation of the real-time controller. The exosuit assists the wearer
through the dynamic arm module by compensating for the effort required to
lift the forearm against gravity and it compensates for external objects while
being lifted by the user. The control framework includes a biomechanical
model that is customized to the user’s anthropometry with the addition of the
external weight modelled as a spherical object in-built into the user’s hand.
The torque error computed between the reference torque and the interaction
torque measured at the load cell level is then converted into a velocity input
for the actuation stage via an admittance controller.

C. Low-level control: online modulation of robotic assistance

The control structure (Fig. 2 left), operating on the mi-
crocontroller, carries out real-time estimation of the torque
necessary during user motion and automatically tunes the
assistance using estimation of objects via computer vision.
The control model was built on the foundation of the ”Dy-
namic Arm Module,” extensively described by our previous
work[22]: it utilizes a 3D biomechanical model of the human
arm, which is customized to the user’s anthropometrics, to
estimate the electromechanical assistance that the exosuit
provides to the user. As earlier described, the initial controller
is augmented through the incorporation of external weight
estimation using computer vision techniques: when the user
grasps an object, its estimated weight is used to re-estimate
the dynamics of the user’s arm which includes the additional
weight of the grasped object. This subsequently helps to adjust
the level of assistance to compensate for the added external
load. Grasping is triggered by a pressure sensor located at
the user’s index fingertip which allows the detection of the
interaction between the wearer’s hand and the object, thereby
activating the additional assistance in the exact moment of
contact with the object. Once the reference torque (Fig. 2) is
calculated using the tridimensional model of the user’s arm, it
is successively compared with the interaction torque measured
at the end of the actuation cable via a force sensor as described
in Missiroli et al. [8]: the difference between the two was fed
into an admittance controller which subsequently translated the



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2023

Fig. 3. Computer vision accuracy. On the left, the confusion matrix reporting the classification accuracy per class: each class reported a mean classification
accuracy above 86%. The confusion matrix shows the distribution of misclassifications across subjects. On the right, performance evaluated for the computer
vision algorithm, namely Precision, Recall and F1-Score.

torque error into a motor velocity command and compensates
for the gravity.

III. STUDY PROTOCOL

In order to test the efficacy of the proposed architecture,
the study involved eleven right-handed healthy participants:
seven males, and four females of age 25.0[5.5] years (median
[interquartile range(IQR)]), weight 73.0[22.0] Kg and height
1.83[0.13] m. All experimental procedures were carried out
in accordance with the Declaration of Helsinki on research
involving human subjects and were approved by the IRB of
Heidelberg University (Nr. S-311/2020).

A. Experimental setup

We employed a DAQ board (Quanser QPIDe, Markham,
Ontario, Canada) to capture data from the control unit using
a serial protocol, with a sampling frequency of 1 KHz.
During the testing phase, the acquired data from the control
unit provided real-time instructions to the subjects through a
graphical interface (GUI, Fig. 1). For monitoring the activity of
four specific muscles on the subject’s right arm, we employed
a wireless and multi-channel surface EMG system (Delsys
Trigno, Natick MA, USA). The muscles monitored included
the long head of the biceps brachii, the long head of the
triceps brachii, as well as the anterior and posterior parts of
the deltoid. To ensure precise electrode placement, we adhered
to the SENIAM guidelines[23].

We designed the experiment in order to evaluate subjects’
performance while wearing the device under three conditions
to determine the physiological effects on the user in terms
of change of the EMG activity and kinematics accuracy. The
protocol consisted of a set of eighteen controlled movements
(six repetitions for each selected object) that were performed
in three different conditions, namely:

• Exo Off : motor off and exosuit cable slack. This was
used mainly as a baseline to understand the effects of the
device on the user.

• Vision Off : motor on, object classification and localization
do not play a role in modulating the assistance. Assistance
is provided only by the elbow torque computation from
the Dynamic Arm module.

• Vision On: motor on, the exosuit provides adaptive as-
sistance based on the object recognized using computer
vision. Assistance is provided by the Dynamic Arm
module which updates the motor torque with the inclusion
of the extra weight placed at the level of the hand when
the object is grasped.

Subjects were requested to perform repetitive controlled
movements, following the trajectory shown in the GUI by a
phantom avatar as shown in Fig. 1. The trajectory followed by
the participants comprises a series of elbow flexion-extension
movements per trial with an amplitude of 90°, replicating the
speed profiles of a previously published contribution [24], with
an angular speed of 35°/s. A visual cue appeared on the GUI
to set the start event and to tell the subject the object to
lift. To allow the subject to track the avatar’s movement, the
GUI also showed the real-time representation of the subject’s
limbs overlapped with the avatar’s limbs, the latter set with a
transparency level of 30%.

B. Data Analysis

The effect of the computer vision algorithm on the device
was quantified in terms of its effect on vision performance,
muscular activity, and movement kinematics.

To evaluate the performance of the object detection model
through the camera, we calculated three performance indi-
cators: F1-Score, precision, and recall. We also reported the
confusion matrix to resume multi-class classification problems,
comparing the predicted and actual objects of the data set
(Fig. 3). From that, we extracted the overall accuracy of the
model, and assessed the impact that the vision algorithm was
producing in terms of assistance delivered to the user, reporting
the interaction torque computed by the model (Fig. 2). Before
starting the experiments we collected maximum voluntary
contraction (MVC) from the recorded muscles and used it
for the EMG signal normalization during the data processing.
The EMG signals were filtered offline with a fourth-order
Butterworth filter (cut-off frequency 15-450 Hz), rectified and
low-pass filtered at 6 Hz with a fourth-order Butterworth filter;
the signals were then normalized to each participant’s MVC.
We used the EMG signals as a metric to quantify the effort
of the users while executing the experiment. Analysis of the
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Fig. 4. EMG activity and Interaction Torque. On the top panel-left, time series of the Biceps and Triceps activity of a representative subject, averaged across
the repetitions, performing a full movement while lifting the three proposed objects; On the top-right side RMS of the EMG activity between the conditions
Exo Off, Vision Off, and Vision On of the main muscles involved in the elbow movements averaged across subjects; On the low panel-left, a time series of
the interaction torque of a representative subject, averaged across the repetitions while lifting the three proposed objects (LW, MW, and HW) in the ”Vision
Off” and ”Vision On” conditions; On the low panel-right, interaction torque measured by the load cell while lifting the three proposed objects (LW, MW, and
HW) in the ”Vision Off” and ”Vision On” conditions averaged across subjects.

muscular activity was performed by comparing the traces of
the four arm muscles taking into account the whole movement
duration; raw EMG signals were processed offline to evaluate
the Root Mean Square (RMS) as an index of activation level
across tasks and conditions. The onset of the flexion and end
of the elbow extension have been identified with a velocity
threshold-based method [25]: first, the angle trajectories were
filtered with a Savitzky-Golay filter, then the angular velocity
was computed and segmented considering the 10% of velocity
peak to identify the onset and offset events. Furthermore,
we assessed the Co-Contraction Index (CCI) related to the
elbow and shoulder joints according to the formula described
in [26] to evaluate changes in the physiological motion[27].
To evaluate tracking accuracy, for each object (Low-Weight
(LW), Mid-Weight (MW), High-Weight (HW)), we computed
the coefficient of determination R2 and the root mean square
error (RMSE) by comparing the elbow trajectories measured
by subjects in three different conditions (Exo Off, Vision Off,
and Vision On) with the reference motion. Additionally, to
determine the differences in user kinematics between the three
conditions, we calculated the cross-covariance between the
signals to measure the delay of movements relative to the
displayed trace.

C. Statistical Analysis

We assessed the normal distribution of the measurements
via a Shapiro-Wilk test with a significance level set at α =
0.05. Repeated measures analysis of variance (rANOVA) was
adopted to examine the effects of the muscle activities while
performing the task. We considered the assistance type as a
within-subjects factor: (Exo Off, Vision Off, and Vision On).
Statistical significance was considered for p-values lower than
0.05; we reported the notation Fdf1,df2 to indicate the degrees
of freedom. Post-hoc analysis on significant main effects
and interaction was performed using Bonferroni-corrected
paired t-tests. Statistical analysis was conducted using Minitab
(Minitab, State College, PA, USA). Reported values and
measurements are presented as mean ± standard error (SE).

IV. RESULTS

A. Vision Performance

Figure 3 displays the evaluation of the Computer Vision
level performance using metrics such as confusion matrix,
precision, recall, and F1-score. The accuracy per class for the
low weight (LW), middle weight (MW), and high weight (HW)
is 97.0 ± 0.8%, 97.0 ± 0.7%, and 86.4 ± 3.6%, respectively.
Overall, the average precision, recall, and F1-score were found
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Fig. 5. Co-Contraction Index. On the left side the figure reports a time series
of the agonist and antagonist muscles of a representative subject, averaged
across the repetitions while lifting the MW; On the right side Co-Contraction
Index calculated between the two analysed groups of muscles (Biceps and
Triceps/Anterior and Posterior Deltoids) within the conditions Exo Off, Vision
Off, and Vision On averaged across subjects computed while lifting LW, MW,
and HW.

to be 93.7%, 93.5%, and 93.5%, respectively, when consider-
ing all tested objects (light, medium, and heavy). The object
detection algorithm achieved an overall accuracy of 93.5%.
Figure 2-right reports the interaction torque averaged over
the subjects for the ”Vision Off” and ”Vision On” conditions
for the objects used in the experiments. We assessed that
the interaction torque in the ”Vision Off” condition for the
three weights is similar, while there is a significant change
(F (2, 10) = 1703.77, p < 0.001) with the ”Vision On”
condition while lifting the three different objects. In the case
of the LW, the growth is 6.85 ± 0.05%, for the MW it is
59.65± 0.58% and for the HW it is 119.84± 1.25%.

B. Muscular Activation

In Figure 4-left we report the EMG envelope of the two
main muscles involved in the flexion/extension of the elbow
(Biceps Brachii and Triceps Brachii). The Figure shows the
EMG of a representative subject, averaged across trajectories
and repetitions for each of the three conditions (Exo Off,
Vision Off, and Vision On) while lifting the three performing
movements with the three proposed objects (LW, MW, HW).

We observed a significant change (p < 0.001, F4,10 =
12.18) in the RMS of the Biceps activity between the ”Exo
Off” and ”Vision Off” conditions, with values changing from
3.70±0.23% to 1.88±0.14% for LW (no significant difference,
p > 0.05). For MW, the change was from 11.36 ± 0.60%
to 7.70 ± 0.61% (significant difference, p < 0.001), and for
HW, the change was from 17.20 ± 1.00% to 11.75 ± 0.82%
(significant difference, p < 0.001). This reduction in Biceps
activity significantly increased when introducing the computer
vision algorithm in the control loop. We detected a significant
change in Biceps activity between the ”Exo Off” and ”Vision
On” conditions, with values changing from 3.70 ± 0.23% to
1.79±0.12% for LW (significant difference, p < 0.001), from

11.36±0.60% to 6.26±0.61% for MW (significant difference,
p < 0.001), and from 17.20 ± 1.00% to 7.90 ± 0.66%
for HW (significant difference, p < 0.001). Moreover, we
observed a significant change in HW Biceps activity be-
tween the ”Vision Off” (11.75 ± 0.82%) and ”Vision On”
(7.90± 0.66%) conditions, with an average reduction of 33%
(p < 0.001). However, we recorded a significant increase
(p < 0.001, F4,10 = 8.95) in the RMS of the Triceps activity
between the ”Exo Off” and the ”Vision Off” conditions for
LW (p < 0.001). We also observed a significant increase in
Triceps activity for MW and HW between the ”Exo Off” and
”Vision On” conditions (p = 0.035 for MW and p < 0.001 for
HW). The EMG activity increased for both controllers while
interacting with the LW object, going from 3.61 ± 0.17% in
the ”Exo Off” condition to 5.62 ± 0.30% for ”Vision Off”
and 5.92 ± 0.30% for ”Vision On”. However, the Triceps
activity increased only in the ”Vision On” condition while
interacting with the MW (from 5.36± 0.32% in ”Exo Off” to
6.33 ± 0.47% in ”Vision On”) and HW (from 6.34 ± 0.40%
in ”Exo Off” to 8.09 ± 0.64% in ”Vision On”) objects.
From the analysis of the Anterior and Posterior Deltoids, we
did not observe any significant change in the RMS of the
EMG activity. Looking at the CCI (Figure 5), we observed
a significant change (p < 0.001, F4,10 = 21.04) in the
index for the main muscles involved in elbow motion (i.e.,
Biceps and Triceps). In particular, we assessed a significant
reduction of the CCI between ”Exo Off” and ”Vision Off”
(p < 0.001), and between ”Vision Off” and ”Vision On”
(p < 0.001) with LW. The CCI changed from 65.62± 2.03%
to 42.16 ± 2.89% and 41.56 ± 2.96% respectively, but no
statistical evidence of changes with MW and HW. For Anterior
and Posterior Deltoids, there was no evidence of a statistical
difference between ”Vision Off” (54.81±2.46%) and ”Vision
On” (55.01 ± 2.21%) conditions compared to ”Exo Off”
(54.08±1.96%) for LW. The same behaviour was observed for
the MW (38.00± 2.20%, 32.25± 2.52%, and 38.88± 2.34%
for ”Exo Off”, ”Vision Off” and ”Vision On” respectively) and
the HW (37.50± 2.26%, 36.80± 2.38%, and 38.72± 2.33%
for ”Exo Off”, ”Vision Off” and ”Vision On” respectively).

C. Movement Accuracy

Figure 6 reports the elbow trajectories for a representative
subject during the tracking task in the three analysed condi-
tions (Exo Off, Vision Off, and Vision On) while lifting the
three different loads (LW, MW and HW). We assess significant
differences (F4,10 = 1.32, p = 0.265) in the coefficient of de-
termination R2 between the desired and measured trajectories,
across the three conditions. In detail, we observe significant
changes (p = 0.046 between Exo Off and Vision Off, and
p < 0.001 between Exo Off and Vision On) in the R2 while
lifting the LW where the coefficient of determination decreased
from 0.89±0.01 in the ”Exo Off” condition to 0.80±0.01 in
the ”Vision Off” and 0.75± 0.02 in the ”Vision On”. This is
confirmed by the RMSE (F4,10 = 0.98, p = 0.417), where we
observe a significant change (p < 0.001) between the ”Exo
Off” (10.41 ± 0.49) and the ”Vision Off” (14.28 ± 0.68), as
well as (p < 0.001) with the ”Vision On” (16.04±0.83) in the
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Fig. 6. Tracking Accuracy On the left side, times series of the elbow angle
of a representative subject while performing the tracking task within the
conditions ”Exo Off”, ”Vision Off”, and ”Vision On”. On the right side
coefficient of determination R2, RMSE and delay computed between the
reference trajectories and the three control modalities for the three objects.

LW case. This trend was repeated for the MW (12.71± 0.74,
15.08±0.65, and 16.16±1.13 for ”Exo Off”, ”Vision Off” and
”Vision On” respectively) and HW (11.92±0.60, 15.61±0.63,
and 17.23 ± 0.94 for ”Exo Off”, ”Vision Off” and ”Vision
On” respectively) objects. Looking at the delay between the
reference trajectory and the subject’s movement in the three
conditions, we did not detect any significant change in time
delay.

V. DISCUSSION

The introduction of soft wearable devices to prevent work-
related musculoskeletal disorders (WMSDs) represents a new
frontier in the application of wearable technology. These de-
vices, when integrated into fields such as logistics or assembly
lines, can help alleviate stress on the user’s joints. They can
function either as stand-alone systems or in combination with
Occupational Exoskeletons (OEs) [2], [5]. Drawing inspiration
from the way visual-motor control operates in humans and its
role in promoting adaptation to the surrounding environment,
we improved our previously introduced control strategy to
support the user’s motion via an elbow exosuit [22]. The pro-
posed strategy utilizes Computer Vision to monitor the user’s
surroundings and adjust the assistance provided by the exosuit
accordingly. By continuously analyzing the environment, the
exosuit can adapt its support to accommodate the user’s needs
and optimize the interaction with the surroundings. This ap-
proach leverages the power of Computer Vision to enhance the
functionality and effectiveness of the elbow exosuit, promoting
a more seamless and adaptive user experience.

To our knowledge, no other existing works in the literature
have achieved a comparable advanced stage in this context thus
far. While there are already methods to modulate the assistance
of an exoskeleton or robotic suit based on muscle activity
using surface electromyography (SEMG) [28], [29]. The use
of SEMG has various limitations in terms of signal degradation

due to user sweating, the presence of moving artefacts, and
electrode detachment [30]. Consequently, especially in indus-
trial environments, applying SEMG-based approaches is not
feasible due to these reasons. To address these limitations,
introducing a camera-based algorithm with computer vision
in the control loop offers a promising alternative for real-
time adjustment of the assistance level of a robotic suit during
interaction with the surrounding environment. In this study, we
present an initial example of a fully developed controller for
human assistance using an elbow exosuit, accompanied by an
experimental evaluation to assess its effectiveness. Our results
proved that the computer vision was able to properly recognise
the three chosen objects (LW, MW and HW) reporting an
overall accuracy above 93.5%, with significant reduction in
muscular activity once the assistance is online modulated.
To elaborate, when the ”Vision Off” mode is activated, the
assistive torque remains constant irrespective of the weight
of the object being lifted. However, when the ”Vision On”
mode is engaged, there is a 7% increase in assistive torque
for lightweight objects, 60% for medium-weight objects, and
120% for heavy-weight objects. This variation in assistance
between the ”Vision On” and ”Vision Off” modes has a direct
impact on the Biceps muscle activity during the lifting task.
Specifically, there is an average reduction of 32% in EMG
activity for medium and heavy-weight objects in the ”Vision
Off” mode, whereas in the ”Vision On” mode, muscle activity
is reduced by 45% and 54% respectively compared to the ”Exo
Off” mode. Additionally, an increase in Triceps muscle activity
was observed during the experiment. However, as highlighted
in prior research by Missiroli et al. [5], this increase is likely
due to the absence of assistance to the muscle during the
extension phase. In upcoming research, we will concentrate
on integrating a passive counteracting mechanism designed to
facilitate elbow extension, thereby promoting a motion pattern
that aligns more closely with a physiological one [31]. In
assessing how different levels of assistance affect the user’s
kinematics, no significant change was observed in the delay
when using the device in both ”Vision Off” and ”Vision On”
modes compared to the ”Exo Off” mode. This indicates that
the delay in the two controllers did not influence the user’s
reaction time during the tracking task. Nevertheless, there
was a decline in the performance of the RMSE and the R2

value when the electromechanical force of the exosuit was
applied to the user. A similar adverse effect was observed in a
previous study by Lotti et al. [24], where the impact was more
pronounced as the speed of movement increased. This effect
was limited by the actuation bandwidth and the static/Coulomb
friction between the wire rope and the Bodwen sheath. It’s
important to note that 8 out of the 11 participants were not
familiar with the device, which could have contributed to
reduced accuracy in trajectory tracking. Future studies should
focus on long-term observations and analyze potential learning
effects related to the use of this technology. Nonetheless, there
are several facets of this study that warrant further refinement.
It is imperative to conduct a more comprehensive and extended
study with the device to assess changes in the user’s motion
strategies. For example, the study should consider the users’
adaptation to the mechanical assistance provided, as prolonged
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use of the device might yield different outcomes. We posit
that movement accuracy could improve due to the wearer’s
ability to anticipate the exosuit’s dynamics. Moreover, the ex-
periments were carried out in a controlled environment, which
fails to emulate the varied conditions of an actual industrial
setting. It also does not account for the extensive array of tasks
that a worker might face or the diversity of objects they might
interact with. Consequently, a more extensive training dataset
and a meticulous pre-calibration of the assistive technology
are essential for enhancing the effectiveness of the assistance
provided.
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